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Abstract: To identify cancer from non-cancer is one of the most challenging issues nowadays
in the early diagnosis of cancer. The primary issue of early detection is to choose a suitable type
of sample collection to diagnose cancer. A comparison of whole blood and serum samples of
breast cancer was studied using laser-induced breakdown spectroscopy (LIBS) with machine
learning methods. For LIBS spectra measurement, blood samples were dropped on a substrate
of boric acid. For the discrimination of breast cancer and non-cancer samples, eight machine
learning models were applied to LIBS spectral data, including decision tree, discrimination
analysis, logistic regression, naïve byes, support vector machine, k-nearest neighbor, ensemble
and neural networks classifiers. Discrimination between whole blood samples showed that narrow
neural networks and trilayer neural networks both provided 91.7% highest prediction accuracy
and serum samples showed that all the decision tree models provided 89.7% highest prediction
accuracy. However, using whole blood as sample achieved the strong emission lines of spectra,
better discrimination results of PCA and maximum prediction accuracy of machine learning
models as compared to using serum samples. These merits concluded that whole blood samples
could be a good option for the rapid detection of breast cancer. This preliminary research may
provide the complementary method for early detection of breast cancer.
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Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

More than 2.3 million cases and 685,000 mortalities from breast cancer were reported in 2020.
Australia/New Zealand, Western Europe, Northern America, and Northern Europe had the
highest incidence rates (>80 per 100,000 females), whereas Central America, Eastern and Middle
Africa, and South-Central Asia had the lowest rates (<40 per 100,000) [1,2,3]. By 2040, the
problem of breast cancer is estimated to increase to over 3 million new cases and 1 million
fatalities every year due to population growth and aging alone [3]. In the U.S. breast cancer
affects over 13,000 women every year, who are 40 years old or younger. Furthermore, among
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women aged 20-39, breast cancer ranks first in terms of cancer-related deaths [4]. Today, a breast
cancer diagnosis is still a major challenge in clinical medicine. According to the U.S. National
Cancer Institute, the cost of diagnosing and treating breast cancer may exceed $20.5 billion per
year [5]. Nowadays, a variety of methods are being used for the screening of breast cancer,
including in-line X-ray synchrotron phase contrast tomography (XSPCT), magnetic resonance
imaging (MRI) [6], microwave imaging technique [7], fluorodeoxyglucose (FDG) positron
emission tomography/computerized tomography (PET/CT) [8] and Raman spectroscopy [9].
These breast cancer detection techniques have limitations such as high costs, harmful radiation,
poor resolution, sensitivity, and inconveniences to the patients [10]. Mammography is known as
a gold standard technique for breast cancer screening, but it is not suitable for patients under 40
years old and with dense breasts, less sensitive to tumors (smaller than 1 mm, approximately
100,000 cells), and does not indicate prediction about eventual disease outcome. Moreover, the
ionizing radiation from X-rays increases the risk of cancer in women who use mammography
as a screening test [11,12]. Improved survival rates depend on early identification and rigorous
diagnostic procedures. Although the current method for diagnosing Triple Negative Breast
Cancer (TNBC) from the histopathology of biopsy samples is highly accurate, it still has some
drawbacks that limit its use, including a complicated procedure, time taking, invasiveness, and the
requirement for professionals [13,14]. Therefore, it is necessary to find experimental techniques
with high sensitivity, speed, economy and robustness for early-stage illness identification before
the beginning of micro metastases and to decrease the fatality rate among women. In clinical
diagnosis, the blood is a standard sample form and must be collected for other measurements.
Meanwhile, cancer induces some dissociated particles in the blood and causes subtle composition
changes [15]. Therefore, if combined with an appropriate and successful information extraction
technique, analyzing the atomic information of blood might be an effective solution to meet the
above-mentioned need.

Laser-induced breakdown spectroscopy (LIBS) is a useful technique because it can rapidly
identify multiple elements with high resolution [16,17]. Specific wavelength-related spectral
lines reflect the information about the respective element. The elements distribution can be
examined by mapping the sample surface [18,19]. Visual elemental imaging of mice breast
cancer tissues using LIBS was carried out to initially understand anti-tumor mechanisms. The
analysis of four distinguishable elemental calcium (Ca), copper (Cu), magnesium (Mg) and
sodium (Na) from tumor tissues showed the therapeutic effects of drugs on the tumor [6]. It is
challenging to get samples of human biological tissue due to medical ethics. Researchers have
started to consider using samples obtained during routine tests, such as blood, to introduce this
technology to clinical investigations in terms of practical applicability.

LIBS combined with machine learning plays a remarkable role in the diagnosis of different
malignancies. Machine learning is a modern data mining method established by artificial
intelligence (AI) and more efficient for extracting the appropriate distinguishing characteristics
from a sample [20]. AI has recently been utilized to identify COVID-19 positives rapidly by using
CT imaging technology and related clinical data. Radiologists identified all of these patients as
COVID-19 negative through reverse transcription- polymerase chain reaction (RT-PCR) and CT
scans, but the AI system correctly recognized 17 of 25 patients (68%) as COVID-19 positive with
significant enhancement [21]. The ability of related algorithms for classification and identification,
containing Support Vector Machines (SVM), Gradient Boosting Linear Discriminant Analysis
(LDA) and Fisher Discriminant Analysis (FDA) with accuracy up to 96% were fully demonstrated
by advances in medicine for the diagnosis of melanoma in biomedical fluids (tissue and blood
homogenates) dropped on the solid substrate [22]. In a recent study, Xue Chen et al. combined
the LIBS technique with chemometric methods to discriminate the whole blood samples of
lymphoma patients with healthy samples by using principal component analysis (PCA), k-nearest
neighbor (k-NN) and LDA models. With an accuracy of over 99.7%, 99.6% sensitivity and
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99.7% specificity, both LDA and k-NN models showed good discrimination analysis [15]. Y.
Chu et al. illustrated that Nasopharyngeal Carcinoma (NPC) and healthy serum samples can
be distinguished using LIBS in combination with a random forest-extreme learning machine
(RF-ELM) model to identify NPC accurately. The identification accuracy rate, sensitivity, and
specificity of NPC serum and healthy samples achieved 98.3%, 99% and 99.7%, respectively
[23]. This study demonstrates that machine learning techniques paired with blood sample-based
LIBS can be a non-invasive, fast and reliable diagnosis technique for human malignant tumors.

Indeed, lots of research have been conducted on this subject, the precise method to investigate
the concentration of elements in the blood by different malignancies is still not clear [24,25].
The concentration of trace elements in the blood plays a crucial role in a variety of biological
processes by activating or inhibiting enzymes, metalloproteins for binding sites, interacting with
other elements and changing the permeability of cell membranes [24]. It is usually considered
that any changes in the human body might result in changes in the blood because blood serves
as the medium for the movement of trace components [25]. Changes in the amounts of trace
elements are either the cause or a consequence of improper metabolism and the growth of
malignancies.

Although, some other works have been conducted LIBS in blood analysis [26]. The novelty
in our work is that the difference of whole blood and serum samples in LIBS breast cancer
diagnosis. We proposed an efficient and fast method for early diagnoses of human breast cancer
with a comparison of whole blood and serum samples using LIBS combined with machine
learning models. After depositing on the boric acid substrate, the effects of two kinds of samples
were compared during experimental measurements to investigate the better type of sample.
Classification models including the decision trees (DT), discriminant analysis (DA), logistic
regression (LR), naive Bayes (NB), k-NN, support vector machines (SVM), ensembles classifiers
(ECS) and neural networks (NN) classifier were used to compare the classification results of
whole blood and serum samples for the diagnosis of breast cancer.

2. Materials and methods

2.1. LIBS experimental setup

In the experiment, a Q-switched Nd: YAG laser (Q-smart 850) operating at 10 Hz was employed
with a second harmonic (wavelength 532 nm) at a pulse energy of 103 mJ/pulse of diameter
Ø6 mm focus through a biconvex lens of focal length 115 mm to initiate laser plasma in the
blood samples. The plasma emission is collected into an optical fiber spectrometer (AvaSpec
2048–2-USB2, Avantes) with a range of 190 nm to 770 nm and a resolution of 0.08 nm and
detected by the charge-coupled device (CCD). A delay generator (DG535, Stanford Research
Systems) was used to adjust the timing of the triggering pulse for the Q-switch and spectrometer.
Figure 1 shows the LIBS experimental setup for the detection of breast cancer. The delay time
for the spectrometer to be triggered was set at 1 µs, and the integration time of the CCD was set
at 2 ms. A two-dimensional translation stage was used to adjust the laser spot position on the
samples. This experiment was carried out in normal air conditions.

2.2. Whole blood and serum samples

In this work, 13 whole blood cancer samples and 11 whole blood healthy samples were collected.
Every sample was from a different patient or volunteer, and were examined by Punjab Institute of
Nuclear Medicine (PINUM) cancer hospital, Pakistan. Similarly, 18 serum cancer samples and
20 non-cancers samples were also collected from all different individuals for analysis. All the
cancer samples including whole blood and serum belongs to the stage III C based on previously
diagnosed by pathological examination of biopsy samples of tissue and lymph nodes. The clinical
protocol for both types of samples was certified by the Clinical Research Ethics Committee of
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Fig. 1. Schematic of LIBS Experimental Setup.

PINUM Hospital. Whole blood samples were obtained from the vein inside the individual’s arm
near the elbow and placed in ethylenediaminetetraacetic acid (EDTA) tubes to prevent blood
clotting. Serum samples were obtained after centrifugation in a serum separator tube (SST) which
contains separating gel and clot activator to create a barrier between whole blood and serum.
After collection, the samples were kept in a 4 °C refrigerator until the LIBS measurement, which
was carried out within 48 hours of sample collection. Before LIBS analysis of liquid samples,
the liquid blood samples were solidified for enhancing the spectral signal. Figure 2 shows (a)
whole blood samples stored in EDTA tubes and on a boric acid substrate and similarly (b) serum
samples store stored in SST and on a boric acid substrate after ablation. The pre-treatment steps
are given below:

(1) A micropipette was used to pour 50 µl of blood sample onto a pellet for each sample. Each
pallet was made by pressing 99.7% pure boric acid powder at 20 Mpa in a hydraulic press,
and the pellet diameter is about Ø40 mm.

Fig. 2. The image of (a) whole blood samples stored in EDTA tubes and on a boric acid
substrate and also (b) serum samples stored in SST and on a boric acid substrate after
ablation.
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(2) Each blood sample was dried in the air for more than 5 minutes.

(3) For each sample, 60 spectra were collected, each on a fresh position. The focus position of
the laser on the sample was adjusted by a 2D motorized stage. The point of focus changed
with each laser shot. If we repeat the laser shots in the same position, the crater formed
before will cause a disturbance in the LIBS signals.

3. Data processing procedure and methods

Classification between whole-blood samples of breast cancer and non-cancer is represented in
case 1 and the discrimination between serum samples of breast cancer and non-cancer is in case
2.

3.1. Data preprocessing

The following processes were included in data preprocessing.

(1) Averaging process: 60 raw spectra of each cancer and non-cancer samples were obtained
from both whole blood and serum samples. Total number of raw spectra from whole
blood samples of cancer was 780 and non-cancer was 660. Similarly, the total number
of raw spectra from serum samples of cancer was 1080 and non-cancer was 1200. To
minimize spectral fluctuations caused by laser pulse shot-to-shot energy fluctuation and
inhomogeneity of samples, calculated an average spectrum of every five adjacent raw
spectra, total 12 averaged spectra were obtained from each sample in both cases. Total 156
and 132 averaged spectra from whole blood samples of breast cancer and non-cancer, and
216 and 240 averaged spectra from serum samples of breast cancer and non-cancer were
obtained, respectively. Table 1 listed the distribution of samples and spectra for both cases.

(2) Normalization: Each average spectrum was normalized with its total spectral intensity
calculated by integrating the spectral intensity over the whole spectral range. The
preprocessed spectra were produced by the preceding process.

Table 1. Description of the samples and their spectra for case 1 and case 2

Case No. Sample Type No of sample
Total no of raw

spectra
Total no of averaged

spectra

Case 1.
(Whole blood)

Cancer 13 780 156

Non-Cancer 11 660 132

Case 2.
(Serum)

Cancer 18 1080 216

Non-Cancer 20 1200 240

3.2. LIBS spectral analysis

The LIBS spectra of the substrate, whole blood samples of breast cancer and non-cancer as well
as serum samples of breast cancer and non-cancer are shown in Fig. 3. Significant emission lines
of boron (B) and carbon (C) can be seen in the average spectrum of a substrate. Breast cancer
and non-cancer samples have quite different spectra than the substrate. The atomic emission lines
in these spectra were labeled by using NIST atomic emission database [27]. Here, the strong
spectral lines of Calcium (Ca), Nitrogen (N), Sodium (Na), CN-band and C were noticed in both
breast cancer and non-cancer samples. The concentration of these elements in cancer samples
are greater than those in non-cancer samples.

In this work, the materials of substrate for the blood samples were taken into consideration.
The substrate with single component and minimal interference to blood samples was used in this
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Fig. 3. LIBS spectra of average normalized intensities of several atomic emission lines of
the (a) substrate, (b) and whole blood breast cancer with (c) non-cancer samples, and (d)
Serum breast cancer with (e) non-cancer samples in the spectral range 200-650 nm.
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analysis. Chu et. al. also used boric acid pallets for the early diagnosis of blood cancer samples.
Elements including Ca, Mg, Na, K and CN-band with different concentrations were observed in
the blood cancer samples and only B, O, N and H were observed in the empty boric acid pallet of
LIBS spectral analysis [28]. Here, the significant emission lines of Na, Ca, N, C and CN-band
were existed in the spectra of breast cancer samples and only B and C lines were found on the
LIBS spectra of empty boric acid pallet and was not used in the selected lines of analysis. Boric
acid is used as a substrate because of a smaller number of elements and less emission lines were
shown in LIBS spectra of empty substrate pallet to reduce the influence of elements in the blood
sample.

For the discrimination analysis, 11 emission lines were chosen, including 7 atomic lines of
Ca, C, Na, N and 4 from the CN-band. The prominent characteristic emissions with higher
concentrations of Ca, Mg, Na, C2 and CN-band were observed in the LIBS spectra of tissue
samples of breast cancer patients compared to the healthy one [29]. As C and N are the main
components in a biological cell. Both endogenous and exogenous factors were associated to
the C and N emission lines. Na is another potential biomarker, and its abundance rises because
of the cancer. In physiological saline, Na plays a significant role in regulating the balance of
physiological regulation. CN-bands may result from the ablation of CN-bands in amino acid
structures within the cells or from the recombination of C components stimulated from the sample
and N in the surrounding atmosphere [30]. The Ca regulates a wide range of cellular functions,
including gene transcription, cell proliferation and muscle contraction, it is almost a universal
intracellular messenger. On the other hand, the ducts that carry the milk and the glandular tissue
where milk is produced both experience calcification. This effect, which is frequent in lobules, is
usually benign. Sometimes, the ductal calcification is a sign of preinvasive ductal carcinoma
in situ (DCIS), which is noninvasive. A calcified track appears along the duct’s path when the
tumorous cells in the middle of ducts die (mostly as a result of the lack of nutrients) [31]. The
concentration of Ca is more important than other elements for also the identification of many
other malignancies. Excess of Ca lines with high intensities in Gastrointestinal stromal tumor
(GIST) tissues in comparison to its healthy tissues is related to the presence of tumor [32]. It
may also show great distinguishing ability in breast cancer detection. El-Hussein et al. have
reported higher Ca and Mg concentrations in breast and colorectal cancer tissues in contrast to
non-neoplastic ones [33]. Table 2 lists the details of the selected lines based on the NIST database.
The spectral emission lines of the boric acid pallets are not subtracted because their intensities
were not much higher than those of the blood samples and were stable during the experimental
measurements. The concentration of Ca and other elements decreases in the spectra of serum
samples, it may be because of the centrifugation of blood. Meanwhile, emission lines of Ca, C,
N, Na and CN-band were observed in both types of samples, but whole blood samples contained
strong emission lines as compared to serum samples because of enhancement in signal-to-noise
(S/N) ratio as compared to serum samples spectra.

Table 2. 11 atomic emission lines with corresponding
elements

Elements Wavelength (nm)

C 247.8

Ca 393.4, 396.8, 422.7

CN 385.7, 386.19, 387.1, 388.3

N 500.5

Na 588.9, 589.5

In order to examine the uncertainties in the spectral data, histogram was used for both cases.
Histogram comparing the average normalized intensities of 11 LIBS spectral lines of both
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cancer and non-cancer samples. The error bars are the standard deviations of the intensities
of independent spectra for both cases are shown in Fig. 4. Mean percentage of fluctuation in
the intensities of these lines was less than 0.5% in both cases. Almost all the emission lines
of Ca, Na, N, C and CN-band in histogram show higher intensities of breast cancer samples
than non-cancer samples Enhancement in the concentration of Ca lines may provide the higher
discrimination in breast cancer detection.

Fig. 4. Histogram comparing the average normalized intensities of 11 LIBS emission lines
of (a) whole blood and (b) serum samples of both cancer and non-cancer samples. The error
bars are the standard deviations of the intensities of independent spectra.

4. Results and discussion

4.1. Discrimination analysis

The principal component analysis (PCA) was implemented as an unsupervised machine learning
method on the spectral data matrix to reduce the dimensionality and to distinguish between breast
cancer and non-cancer with both types of samples. Figure 5 shows the PCA clustering analysis
of (a) whole blood and (b) serum samples of breast cancer and non-cancer. The cumulative
variance was primarily defined by the first three principal components (PCs). i.e., 99.5% in case
of whole blood samples and 96.8% in case of serum samples, respectively. The PCA results
of whole blood and serum samples of breast cancer and non-cancer were not well classified.
Meanwhile, the whole blood samples show better discrimination in comparison to serum samples
because of dispersion of points in each region of cancer and non-cancer samples is relatively
large. Furthermore, due to overlapping the scores of cancers and non-cancer samples are not
within their respective regions in both cases. Figure 6 shows the clustering analysis based on the
first three PCs. (a) Taking all 156 averaged spectra of whole blood breast cancer samples and
(b) 216 averaged spectra of serum breast cancer samples into the PCA. It can be seen that the
sample spots found in the various breast cancer samples were mixed and could not be completely
differentiated. This also showed that the elemental components of breast cancer patients were
normally consistent. Data preprocessing method was used to minimize interpatient variability
among the patients. For this purpose, averaged and normalized spectral data were used to
weaken the influence of variation within each patient. The LIBS spectra obtained from breast
cancer samples have good stability although each patient has certain individual differences. This
supports the potential of LIBS as a possible breast cancer detection technique.



Research Article Vol. 14, No. 6 / 1 Jun 2023 / Biomedical Optics Express 2500

Fig. 5. PCA clustering analysis of (a) whole blood and (b) serum samples of breast cancer
and non-cancer.

Fig. 6. PCA clustering analysis of each patient of breast cancer samples of (a) whole blood
(b) serum.

4.2. Multivariate statistical analysis

4.2.1. Machine learning methods

For the classification of breast cancer and non-cancer samples, machine learning models were
examined to improve the identification feature of LIBS. In case 1, among 13 breast cancer
samples, 9 samples with 108 averaged spectra were randomly selected as training set and 4
samples with 48 averaged spectra were left for prediction set. Among the 11 total number of
non-cancer samples, 8 samples with 96 averaged spectra were randomly selected as training set
and the other 3 samples with 36 averaged spectra were used for prediction set. There was no
overlapping between the training and prediction sets from the individual perspective. In the
same way, the distribution of samples with their spectra for training and predicting were selected
for case 2. 12 cancer ones with 144 averaged spectra and 13 control ones with 156 average
spectra were randomly selected for the training, and 6 cancer ones with 72 average spectra and 7
control ones with 84 averaged spectra were left for the prediction in case 2. In both cases all the
samples with their related spectra were selected for training or prediction set, therefore, there is
no correlation between the spectra of training and prediction set. The distribution of prediction
and training datasets of samples and their spectra in both cases is shown in Table 3.



Research Article Vol. 14, No. 6 / 1 Jun 2023 / Biomedical Optics Express 2501

Table 3. Distribution of training and prediction sets for case 1 and case 2

Data
Separation

Whole Blood
(Case. 1)

Serum
(Case. 2)

Cancer Non-
Cancer

Cancer Non-
Cancer

Training Set
No of Samples 9 8 12 13

No of Spectra 108 96 144 156

Prediction
Set

No of Samples 4 3 6 7

No of Spectra 48 36 72 84

DT, DA, LR, NB, k-NN, SVM, ELC and NN are a few supervised machine learning methods
that have been used in classification analysis. A lot of research has been done by using all these
algorithms for the identification of breast cancer samples with different methods [34].

A decision tree is a classification model that is employed for both regression and classification.
Making decisions is guided by a tree structure from the root to the final class (leaves). DT is
constructed by analyzing a dataset of training samples for which the class labels are already
known. Furthermore, if the DT model is trained on good-quality data, it can produce maximum
accuracy of prediction dataset [35]. Classification And Regression Tree (CART) method was
used here to distinguish between cancer and non-cancer samples. The Gini impurity index is
employed to find the probability of incorrect classification. Fine tree, medium tree and coarse
tree are the tested variants. The maximum number of splits used was 100 for a fine tree, 20 for a
medium tree and 4 for a coarse tree. These were used to compare the accuracy of every variant.

Discriminant analysis is used to differentiate the information of two or more classes depending
on the supposition that various classes have distinct multivariate normal distributions of the
predictor features. For the linear discriminant analysis (LDA), the multivariate normal dis-
tributions have the same covariance matrix for each class, and only the means differ. Both the
mean and covariance matrix change for each class in quadratic discriminant analysis (QDA),
which produces more versatility. To find the subscription of an unknown sample, the DA model
computes the posterior probabilities that the sample is related to various classes. The sample is
then attributed to the class with the highest posterior probability [36]. For the identification of
breast cancer samples both LDA and QDA were examined. Feature lines were used as a predictor
in the discriminant analysis. This was performed to decrease the dimensionality of the dataset
and prevent overfitting.

The link between a dichotomous dependent variable and several independent variables that
are either categorical or continuous is modeled using binary logistic regression. Binary logistic
regression has various presumptions that must be met to produce a reliable result. A variety of
logistic regression remedies include enlarging the sample size, eliminating one of the correlated
variables, and integrating variables into an index. Despite increasing sample size, it may
be reliably inferred that leaving out one of the correlated variables can significantly lessen
multicollinearity [37]. This is especially helpful when the sample size is small or the classes
have comparable variance structures. Here, binary logistic regression as a function of a linear
combination of predictors was used to classify cancer and non-cancer samples.

A Naïve Bayes classifier follows the Bayes theorem (from Bayesian statistics) and strong
(naive) independence assumptions. The main benefit of this classifier is that it only needs a
small amount of training data to calculate the means and variances of variables compulsory for
discrimination. It is not necessary to calculate the entire covariance matrix because independent
variables are supposed. Only the variances of the variables for each label must be calculated [38].
Here, Kernel Naïve Bayes used kernel distribution and Gaussian Naïve Bayes used Gaussian
distribution for predictors was examined.
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SVM model follows the principle of dimension reduction and the Vapnik-Chervonenkis
dimension theory of statistical learning. The objective of SVM is to identify the accurate
classification hyperplane to satisfy discrimination requirements, which increased the blank area
on both sides of the hyperplane while verifying the accuracy of classification [39]. Here, the
optimized kernel scale for linear SVM was 1, quadratic SVM was 1, cubic SVM was 1, fine SVM
was 1.5, medium SVM was 6 and coarse SVM was 24 optimized in this study.

k-NN is employed in pattern recognition and discrimination methods. A Euclidean distance
measure between specific point “x” and known training dataset points in the prediction dataset,
where taking k known training dataset points by shortest distance from a specific point and
determining the value of k associated with which class, determining the class with the maximum
classification and assigning the “x” point to that class [40]. The number of neighbors for Fine
k-NN was 1, Medium k-NN was 10, Cubic k-NN was 10, Coarse k-NN was 100, Cosine k-NN
was 10 and Weighted k-NN was 10 used in this study to compare the accuracies of both cases.

An ensemble classifier is a method that uses many classifiers to solve a specific problem using
a specific combination rule [41,42]. Conceptually, the single method that contains the ensemble
is designed to solve the same problem individually. The final output of the ensemble is the sum
of the outputs of the single method. There are two types of ensemble methods: homogenous
and heterogeneous ensembles. Homogeneous ensembles belong to two potential subtypes: (1) a
combination of a meta-ensemble method such as boosting, bagging and random subspace and
one single method and (2) a combination of at least two variants of the same machine learning
method, whereas heterogeneous ensembles are a combination of at least two distinct machine
learning methods [43]. The primary goal of each ensemble classifier is to achieve high accuracy.
This work investigates the different types of ensemble classifiers, such as subspace discriminant
and subspace k-NN, as well as boosted trees, RUS boosted trees, bagged trees, and subspace
trees, in breast cancer detection. The maximum number of splits for each classifier was 20.

A neural network model contains a group of models that find out underlying correlations
in a group of data using a method related to how the human brain works. In this concept,
neural networks are groups of neurons that may have a biological or artificial origin. The linked
components of the decision regions are unbounded for neural network functions with a maximum
width less than or equal to the input dimension. Hence, the decision regions of such networks
intersect with the boundary of a natural input domain. [44]. Here, a neural network is used to
compare the accuracies of their different classifiers including narrow NN, wide NN, medium NN,
bilayer NN and trilayer NN. Rectified Linear Unit (ReLU) used as activation function. The size of
one completely connected layer was 10 for narrow NN, 25 for medium NN and 100 for wide NN.
Each two-connected layer size in Bilayer NN was 10 and in trilayer NN each three-connected
layer size was 10. Furthermore, a detailed description of all the above classifiers is in the given
Refs. [35,44].

The spectral line intensities of breast cancer and non-cancer were different, but it was hard
to discriminate by examining directly as well as through the PCA. Machine learning methods
were combined to enhance the performance of LIBS to distinguish breast cancer and non-cancer
samples.

4.2.2. Comparison of classification results

The discrimination models were trained and predicted (tested) using two cases. Whole blood
samples discrimination against breast cancer and non-cancer has been done in case 1. In case
2, machine learning models discriminate the serum samples of breast cancer and non-cancer.
A 10-fold cross-validation approach was used as a preventative measure against overfitting.
Function parameters of all the models were optimized by 10-fold cross validation and a grid
search based on training dataset. The optimal parameter combination leading to the best cross
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validation result was used to build the classification model. Table 4 shows the classification
results of case 1 and case 2 with optimized parameters and functions of each model.

The classification accuracy of each model was calculated as the percentage of the correctly
predicted number of spectra to the total number of spectra. To implement classification models,
the MATLAB Classification Learner App was used. On MATLAB 2021a, all classification
models including their accuracies were applied on this App. The PC used for the calculations
had an Intel Core i7-6600U processor unit at 2.60 GHz, Windows 10, and 16 GB of RAM. On
MATLAB 2021a, all classification models were applied.

In case 1. when looking at a variety of discrimination models, it was discovered that most
classification algorithms could make accurate predictions with an accuracy in the range of 57.1%
to 91.7%. Further, it was found that the narrow and trilayer NN calculated the highest prediction
accuracy. LDA also showed good results with 88.2% training and 90.5% prediction accuracy.
LDA and NN models provided the best option for training and class prediction. For real-world
applications, prediction accuracy played an important role in discrimination to examine the
model stability. However, narrow NN and trilayered NN both provide 92.2% training and 91.7%
prediction accuracy. Indeed, the best model should have the highest prediction accuracy under
the premise of balance between training and prediction set. These outcomes demonstrate the
variations between the spectra of the same type of blood due to the individual differences between
cancer and non-cancer samples. Here, DT, DA, LR, NB, k-NN, SVM, ESC’s, medium, wide and
bilayer NN produced low prediction accuracy, possibly because of significant overfitting and a
certain amount of overlap of data which is intrinsic to input variables. Narrow and trilayer NN
could overcome this problem.

In medical diagnosis, a statistical test called sensitivity is used to correctly identify cancer
samples, also known as true positive rate, whereas a test called specificity is used to identify
non-cancer samples, also known as true negative rate. The confusion matrix was used to
determine the specificity and sensitivity of all the models. A confusion matrix is a comparison
between predicted class and true class; truly predicted values are located along the diagonal of a
matrix. However, false predictions are outside of the diagonal. Confusion matrix and receiver
operating characteristic (ROC) results of narrow NN and trilayered NN have a not big difference
because of the same accuracy. Therefore, the sensitivity and specificity of only the narrow
NN were discussed and calculated from the confusion matrix and ROC curve. In case 1, in
the prediction dataset, the narrow neural network achieved the highest classification accuracy
at 91.7%. A false positive rate of 12.5% of cancer samples were correctly classified and only
6 spectra showed variation from a single misclassified sample. However, a false negative rate
of 2.8% of non-cancer samples were identified as cancer samples and only 1 spectra showed
variation from a single misclassified sample. It resulted in a specificity of 97.2% and sensitivity
of 87.5% respectively. All cancer and non-cancer samples were completely classified. Only
one cancer was mistakenly identified, and one non-cancer was misclassified as cancer. In Fig. 7.
(a) confusion matrix and (b) ROC curve of the narrow neural network was produced from the
prediction model for discriminating the whole blood samples. To discriminate whole blood
samples, the ROC curve depicts true positive value versus false positive value with an AUC
(Area under the curve) of 0.93. The working points are indicated on ROC curves in the upper-left
corner.

In case 2: The majority of classification models offer prediction accuracy levels of 44.2% to
89.7% when performing to distinguish between serum samples of breast cancer and non-cancer.
While a fine tree, medium tree and coarse tree provided a maximum of 95.0% training accuracy
and 89.7% prediction accuracy. Bagged trees from the ensemble classifier also showed good
results with 96.0% training and 84.6% prediction accuracy. DT and bagged trees gave the
best option for training and class prediction. The greatest option for predicting classes was
provided by decision tree models. The discrimination between serum cancer and non-cancer
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Table 4. Classification results of case 1 and case 2

Classifier Classifier Type

Optimized
Parameter

Function

Case 1.
Distinguish

Whole Blood
(Cancer Vs

Non-Cancer)

Case 2.
Distinguish

Serum
(Cancer Vs

Non-Cancer)

Tr
ai

ni
ng

A
cc

ur
ac

y
(%

)

Pr
ed

ic
tio

n
A

cc
ur

ac
y

(%
)

Tr
ai

ni
ng

A
cc

ur
ac

y
(%

)

Pr
ed

ic
tio

n
A

cc
ur

ac
y

(%
)

Decision
Trees

Fine Tree

N
o

of
sp

lit
s 100 Gini’s

diversity
index

97.1 81.0 95.0 89.7
Medium Tree 20 97.1 81.0 95.0 89.7
Coarse Tree 4 97.1 81.0 95.0 89.7

Discrimination
Analysis

Linear
Discrimination

Sc
al

e 1 Linear 88.2 90.5 92.0 66.7

Quadratic
Discrimination

1 Quadratic 90.2 82.1 94.0 75.6

Logistic Regression 1 Linear 89.2 77.4 92.7 70.5

Naïve Byes
Gaussian Naïve

Bayes Sc
al

e 1 Gaussian 93.6 69.0 91.0 74.4

Kernel Naïve
Bayes

1 Kernel 92.2 72.6 85.7 44.2

Support
Vector

Machine
(SVM)

Linear SVM

K
er

ne
lS

ca
le

1 Linear 90.2 76.2 94.7 69.9
Quadratic SVM 1 Quadratic 91.7 82.1 93.7 64.7

Cubic SVM 1 Cubic 96.1 82.1 90.7 64.7
Fine Gaussian 1.5

Gaussian
84.3 86.9 87.7 48.1

Medium
Gaussian

6 86.8 86.9 91.7 67.9

Coarse Gaussian 24 74.5 86.9 73.7 60.3

K Nearest
Neighbor
(k-NN)

Fine k-NN

N
o

of
N

ei
gh

bo
rs

1
Euclidean

88.2 83.3 90.7 64.7
Medium k-NN 10 81.4 88.1 87.0 59.6
Coarse k-NN 100 68.6 84.5 69.3 59.6
Cosine k-NN 10 Cosine 83.3 86.9 88.7 59.0
Cubic k-NN 10 Minkowski 80.9 90.5 85.3 60.3

Weighted k-NN 10 Euclidean 86.3 86.9 88.3 60.3

Ensemble
Classifier

Boosted Trees

M
ax

.N
o

of
sp

lit
s 20 AdaBoost 52.9 57.1 52.0 53.8

Bagged Trees 20 Bag 96.1 67.9 96.0 84.6
Subspace

Discriminant
20 Subspace 86.3 69.0 91.7 64.1

Subspace k-NN 20 Subspace 92.2 69.0 86.0 51.9
RUS Boosted

Trees
20 RUS Boost

Bag
79.9 57.1 69.0 53.8

Neural
Network

Narrow Neural
Network

La
ye

rs
iz

e

1st 10

ReLU

92.2 91.7 95.3 69.9

Medium Neural
Network

1st 25 91.7 86.9 96.7 67.3

Wide Neural
Network

1st 100 94.6 88.1 96.0 69.9

Bilayer Neural
Network

1st10
2nd 10

93.1 87.3 95.3 70.8

Trilayer Neural
Network

1st10
2nd 10
3rd10

92.2 91.7 95.7 71.2
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Fig. 7. Shows (a) the confusion matrix and (b) the ROC curve of the narrow NN produced
from the prediction model for discriminating the whole blood samples of breast cancer
versus non-cancer.

samples was accurately predicted. Discriminant models such as LR, NB, k-NN, SVM and ESCs
except for bagged trees and NN models were not robust enough to produce good prediction
accuracy due to the small number of training samples, which seems quite small with the large
variations of human serum samples. Despite the precautions used in the data organization into the
training and prediction sample sets, the representability of the prediction samples by the training
samples cannot, therefore, be guaranteed in an optimized way. For decision tree classifiers,
the discrimination results of the training dataset were consistent with the prediction set data.
However, the highest prediction accuracy for serum samples is slightly less than whole blood
samples, because outliers are found in the spectral data may be because of the centrifugation of
blood during the extraction of serum.

The confusion matrix and ROC results of a fine tree, medium tree and coarse tree do not
have a big difference because of the same accuracy. Therefore, the sensitivity and specificity of
only the fine tree were discussed and calculated from the confusion matrix and ROC curve. In
case 2, For the prediction dataset fine tree model achieved the highest classification accuracy
at 89.7%. A false positive rate of 16.7% of cancer samples were correctly classified and only
4 spectra from first and 8 from second sample showed variation from misclassified samples.
However, a false negative rate of 4.8% of non-cancer sample were identified as cancer sample
and 4 spectra showed variation from a single misclassified sample. It resulted in a specificity of
95.2% and sensitivity of 83.3%. All cancer and non-cancer samples were completely classified.
Two cancer sample was mistakenly recognized, and only one non-cancer was misclassified as
cancer. Figure 8 shows (a) the confusion matrix and (b) the ROC curve of the fine tree produced
from the prediction model to distinguish between serum samples of cancer and non-cancer. The
ROC curve plots true positive value versus false positive value with the area under the curve
(AUC) were 0.87 to distinguish serum samples of breast cancer versus non-cancer.

In this paper, a total of 30 sub-classifiers were built to classify breast cancer and non-cancer
samples. Limited by the length of this paper, we choose to present the detailed results of the
training and prediction set of narrow NN and LDA from case 1, and the results of the fine tree
and bagged tree model from case 2 can be found in the supplementary file.

In general, it was concluded that concentrations of elements are important for good discrimina-
tion results. In multiple testing, the difference in classification model accuracy is very stable,
with a standard deviation of less than 3%; hence, prediction accuracy was used as the comparison
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Fig. 8. Shows (a) the confusion matrix and (b) the ROC curve of the fine tree produced
from the prediction model to distinguish between serum samples of cancer and non-cancer.

standard. The best prediction accuracy was provided by narrow and trilayer NN models for
whole blood samples, and decision tree models for serum samples to differentiate between breast
cancer and non-cancer. Therefore, in both cases, the blood samples could be clearly distinguished
from the non-cancer by implementing the best prediction models and leading to an optimal
ROC property. Other than sample preparation which typically took 5 to 7 minutes to prepare a
sample, the total analyzing time was 2 seconds, including spectrum calculation and predictive
classification results in each case. Our findings thus showed that LIBS is a potential diagnostic
technique for the rapid diagnosis of breast cancer.

Indeed, our samples are not too much to summarize the regular pattern to find the statistical
significance. P values are one of the most widely used concepts in statistical analysis to illustrate
the statistical significance. For this purpose, t-test was used to determine the value of p as a
statistical power to justify the number of samples used in this study. The obtained spectral data
with feature line selection of five trace elements for both whole blood and serum samples showed
significant variations because the p values in the statistical t-test were less than 0.05. Table. 5
shows the mean (M) and standard error (SE) values of training and prediction accuracy of all the
classification model for different number of samples used for whole blood and serum samples.
With two types of samples that are statistically different at p< 0.05 levels, the means in the same
column are suitable values.

Table 5. Mean and standard error of training and prediction accuracy for both cases

Type of Sample Sample
distribution

Total No of samples
(cancer+ non-cancer)

M±SE

Case 1
(Whole
Blood)

Training Set 17 0.765± 0.025

Prediction Set 7 0.757± 0.018

Case 2
(Serum)

Training Set 25 0.745± 0.034

Prediction Set 13 0.666± 0.021

The biggest challenge for LIBS in future studies is the homogeneity, heterogeneity and
sensitivity of the sample surface as it will have an impact on the energy coupling and plasma
excitation for biological samples. The characteristics of laser-matter interaction are influenced
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by the inhomogeneity of samples and the LIBS system fluctuation. By comparing the atomic
emission lines obtained from the whole blood and serum, this work serves as an initial study that
illustrates how the LIBS approach can be used to differentiate between different types of blood
samples. To improve LIBS spectral signals and make them more applicable to a large number of
human samples, further investigation into the blood is still required.

5. Conclusions

In this preliminary research, an efficient and fast method is proposed for early diagnoses of human
breast cancer with a comparison of whole blood and serum samples using LIBS combined with
machine learning models for the first time. 11 atomic emission lines of five elements Ca, N, C,
Na and CN-band from breast cancer and non-cancer samples were used for the discrimination
analysis. PCA results of LIBS spectral data were not differentiated clearly between cancer and
non-cancer samples. Moreover, machine learning models including decision trees, discrimination
analysis, logistic regression, naïve byes, support vector machine, k-nearest neighbor, ensemble,
and neural networks classifiers were applied for classification between whole blood and serum
samples of breast cancer and non-cancer. In the case of whole blood samples, narrow neural
networks and trilayer neural networks both provided 91.7% highest prediction accuracy and
in the case of serum samples, all the decision tree models provided 89.7% highest prediction
accuracy. For case 1, Linear discrimination analysis and neural network models provided the best
option for training and class prediction. Meanwhile, for case 2, decision trees and bagged trees
gave the best option for training and class prediction. These outcomes demonstrated that the
suggested technique can be a useful tool for quick initial screening of breast cancer. Furthermore,
using whole blood as sample achieved strong emission lines of spectra, better discrimination
results of PCA and maximum prediction accuracy of machine learning models as compared to
using serum samples. With these merits, it is logical to argue that whole blood samples could
be a good option for the rapid detection of breast cancer. This research on blood shows a high
detection sensitivity emphasizing the clinical applications of this technique. We will carry out an
additional study based on these results to support LIBS applications in the biomedical industry
by identifying a large number of blood samples. Meanwhile, more research is needed to raise the
standard of diagnosis of cancer by using LIBS.
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